
A Framework for Dynamic

using Procedural

Ari K. Jdnsson

NASA Ames Research Center

Mailstop 269-2

Moffett Field, CA 94035

jons son_pt olemy, arc. nasa. gov

Constraint Reasoning

Constraints

Jeremy D. Frank

NASA Ames Research Center

Mailstop 269-3

Moffett Field, CA 94035

frank_pt olemy, arc. nasa. gov

Abstract

Many complex real-world decision and control problems contain an underlying constraint reasoning
problem. This is particularly evident in a recently developed approach to planning, where almost all plan-
ning decisions are represented by constrained variables. This translates a significant part of the planning
problem into a constraint network whose consistency determines the validity of the plan candidate.

Since higher-level choices about control actions can add or remove variables and constraints, the
underlying constraint network is invariably highly dynamic. Arbitrary domain-dependent constraints
may be added to the constraint network and the constraint reasoning mechanism must be able to handle
such constraints effectively. Additionally, real problems often require handling constraints over continuous
variables. These requirements present a number of significant challenges for a constraint reasoning
mechanism.

In this paper, we introduce a general framework for handling dynamic constraint networks with real-
valued variables, by using procedures to represent and effectively reason about general constraints. The
framework is based on a sound theoretical foundation, and can be proven to be sound and complete
under well-defined conditions. Furthermore, the framework provides hybrid reasoning capabilities, as
alternative solution methods like mathematical programming can be incorporated into the framework,
in the form of procedures.

1 Introduction

Constraint reasoning has been proven to be an effective technique for representing and reasoning about a vari-

ety of real-world decision problems. This includes problems in reactive and deliberative autonomous control.

The interest in autonomous systems for control has grown steadily over the last few years, particularly in

applications where human intervention is impossible, time-consuming or costly. Spacecraft, rovers and other

remote artifacts are excellent examples of such applications. Consider a spacecraft that is coasting through

space, on its way to a destination. Due to the limited availability of communication facilities and planetary

and stellar bodies blocking the spacecraft's communication lines to Earth, human intervention is impossible
for long periods of time. Even when humans can intervene, the time required to determine the state of the

spacecraft, formulate a control sequence, test it, and then execute it, is typically measured in hours if not

days. Finally, having engineers, spacecraft systems specialists and other necessary staff constantly available

to control the spacecraft, is a significant portion of the overall mission cost.
The need to reduce spacecraft mission costs, in conjunction with the desire to explore such faraway

places as Europa and Pluto, has driven home the need for autonomous spacecraft control systems. Over the

last few years, researchers have worked on developing a model-based autonomous control architecture that

can be adapted to different spacecraft and missions. This effort produced the Remote Agent architecture,

a complete autonomous control system for spacecraft. It also produced a complete implementation that

successfully controlled the Deep Space One spacecraft for two days in May of 1999, as part of the Remote

Agent Experiment [MNPW98].

The Remote Agent has three main components:

* A planning and scheduling component that builds detailed plans from high-level mission goals. These

plans take into account resources, temporal information, configuration constraints and other aspects

of controlling a spacecraft.

• An intelligent execution component that executes the plan, by performing the specified tasks and

maintaining the prescribed conditions.

• A mode identification and recovery component that compares the results of executed commands with

a model of the spacecraft, in order to detect and analyze any faults. In addition to identifying likely

faults, it can generate alternative configurations to get around a fault.

Constraint reasoning plays an important role in all parts of the Remote Agent (R.A), but the most

involved constraint reasoning is done in the planner. The reason is that the RA planning approach utilizes

constrained variables to specify action instances, maintenance conditions, temporal information, and various

other aspects of a complex plan. This makes constraint reasoning a significant part of the planning process.

However, the planning task imposes a number of requirements on the underlying constraint reasoning system:

higher-level decisions alter the set of variables and constraints, arbitrary constraints must be effectively dealt

with, and real-valued variables must be represented.

Our work is aimed at providing a general framework for the constraint reasoning capabilities that are

necessary for autonomous control applications like the planner. This particular work is part of a larger effort

to define and build the next generation RA planning system [JMMR99], which provides a clearer and more

powerful definition for the planning framework and increases the generality and efficiency of the resulting

planner system. Our work has resulted in a general constraint reasoning framework that provides all the

functionality needed for the new RA planner. A prototype of the framework has been implemented and

integrated into the new system. Nonetheless, the framework is independent of the planning system and can

be utilized in other applications where dynamic constraint reasoning is needed.

We begin by giving a brief introduction to the new RA planner in the next section. We then go on to

give a quick overview of the concepts in dynamic constraint reasoning, before turning our attention to the

concepts in procedural reasoning in constraint satisfaction. In the following section, we present the overall

framework, including the handling of real-valued variables and the use of hybrid reasoning. We conclude by

reviewing our accomplishments and how this work will progress in the future.

2 New Remote Agent Planner

The RA planning framework is based on the Heuristic Scheduling Testbed System (HSTS) [Mus94]. In both

systems, complex actions and parameterized fluents are described in a unified manner. The world is described
with state variables (also called timelines), whose values change over time. The actions and fluents are then

uniformly described as segments where a state variable maintains the appropriate state. Each segment is

described using a set of CSP variables. The temporal aspect of a segment is described using variables that

represent the start time, the end time, and the duration of the segment. The remaining aspect, the state

value described by the segment, is also described by a set of CSP variables. This is because actions can have

parameters that instantiate the action, e.g, a thrusting action will have direction and thrust level parameters.

Planning axioms specify relations between segments, enforcing preconditions, effects, enabling conditions,
mutual exclusions, etc. These axioms then give rise to constraints between the different CSP variables that

describe the different segments. A set of connected segments, i.e, a candidate plan, therefore gives rise to an
instance of a constraint network. In order for the candidate plan to be valid, there must be a valid solution

to the underlying constraint problem.

As planning decisions are made, the constraint network changes, to represent new segments and eliminate
variables stemming from old segments. As a result, the constraint reasoning must be able to efficiently process

changes to the constraint network, and should also be able to efficiently respond to queries about a sequence

of closely related constraint problems.

The new RA Planner is a general planning framework which uses a model to specify the domain in which

the planning is to take place. The model consists of descriptions of the state variables and the planning
axioms. This has the advantage that the same system can be applied in different situations, from fully

autonomous on-board spacecraft (,ontrol to on-ground interactive planning and scheduling. Consequently, the

constraintreasoningcomponentmustbeabletoemciently represent and reason about arbitrary constraints.

The use of exhaustive enumeration of tuples for arbitrary constraints, while theoretically useful, is too

inefficient for such applications.
Finally, any realistic spacecraft domain, like most other real-world domains, has components which must

be modeled using continuous variables. As a result, the RA planner must be capable of representing and

reasoning about continuous variables, which in turn requires the constraint component to be able to handle

them. Although many constraints over continuous variables have no closed solutions, it is still crucial that

the constraint reasoning component be able to handle real-value variables in a well-behaved and yet effective

manner.

3 Dynamic Constraint Reasoning

Conceptually, a constraint satisfaction problem is a set of variables, each of which must be assigned a value

from a given domain, and a set of constraints, each of which limits the set of allowed combination of variable

assignments. Formally, a Constraint Satisfaction Problem or CSP is a triple P = (V, D, C), where:

1. V = {vl,..., v,_} is a set of variables

2. D = D_, l i E {1,...,n} are the domains of the variables, where each D_, is a finite set of possible

values of v,.

3. C is a set of constraints (Yj, Rj), where each constraint consists of a scope Y/ = {v_,..., vi_ } C_ V and

h D .a relation Rj C_ _Iv=l v,_

A valid solution to a constraint satisfaction problem P = (V, D, C), where V = {xl,..., xn}, is an n-tuple

(v_,,..., v_), such that:

1. v_ E D_ for k = l,...,n, and

2. For any (Y,R) E C with Y = {xi,,...,zi_}, we have (v_,,,...,v_,_) E R.

A constraint problem that has at least one solution is called consistent. Constraint problems that have
no solutions are called inconsistent.

In the spacecraft planning domain, where control involves searching alternate plans, the underlying

constraint problem changes as different planning decisions are made. However, each problem is closely

related to the previous one, making it more effective to view the constraint problem as a dynamic problem,

rather than as single instances of static problems.
To formalize the notion, let P = (V, D, C) be a constraint satisfaction problem. Any problem of the

form Q = (V', D', C') such that V' _D V (i.e. there are more variables), D_ C Du for each v • V (i.e. there

are fewer legal values for variables) and C' C_ C, (i.e. there are fewer legal combinations for variables in a

constraint) is a restriction of P. Any problem of the form Q = (V', D', C') such that V' C_ V (i.e. there

are fewer variables), D_ D D_ for each v • V (i.e.there axe more values for variables) and C' D C (i.e.

there are more legal combinations for variables in a constraint), is a relaxation of P. A Dynamic Constraint
Satisfaction Problem or DCSP is a sequence of constraint satisfaction problems P0, PI,..., such that each

problem P_ is either a restriction or a relaxation of P,-l- This definition is consistent with similar definitions

given in [Dec88].
We are typically interested in the consistency of each constraint problem instance. The reason is that

if the variables describing each segment cannot be instantiated without violating constraints, then any plan

which gives rise to the network is invalid.

4 Procedural Reasoning

Whereas many applicationsof dynamic constraintreasoning are forspecificdomains, model-based control

systems, likethe new RA Planner, must be capable of handling differingdomains with differentconstraints.

This means that a general dynamic constraintframework for such applicationsmust allow arbitrary con-

straintsto be specified,and must be capable of handling them effectively.At the same time, efficient

constraint reasoning is essential for any autonomous control applications. To satisfy these requirements, we

look towards the concept, of procedural reasoning, which has recently been formalized in the context of con-

straint satisfaction [J6n97]. The procedures defined by this work were initially developed to make constraint

reasoning more effective, but procedures are also useful for specifying and using arbitrary constraints. We

now give a brief overview of procedures and some of the related concepts and results. This is not intended

as a complete overview of procedures; the details can be found in [J6n97].

The motivation behind procedures is to utilize specialized methods to solve certain subproblems, e.g,

use suitable algorithms to solve arithmetic equations directly. Based on this idea, an extetuion procedure

is defined as a function e that maps a given partial assignment p to another assignment e(p), such that

p C_ e(p) 1. This definition is suitable for search techniques aimed at solving static constraint satisfaction

problems, and turns out to have a number of useful properties for a wide range of search engines. For

the purposes of specifying constraints for our dynamic constraint reasoning framework, a more powerful

definition is used. An elimination procedure is a function e that maps a tuple of domains (dl,..., dh), into

another tuple (d_,. .., dk'), such that each domain d_ is a subset of the corresponding domain d,. This stronger

definition is used, because our constraint reasoning is aimed at enforcing certain levels of consistency, rather

than just finding some solution.

It is fairly straightforward to see that under easily satisfied conditions, such an elimination procedure

can be used to represent and enforce any constraint. The only necessary conditions are that the mapping
e never eliminates a member of a domain that is a part of a solution, and that if each given domain is a

singleton, then e maps the tuple into a tuple with an empty domain if and only if the singleton does not

satisfy the given constraint. Just as importantly, the procedure can be implemented such that it enforces the

constraint significantly more efficiently, both in time and space, than a declarative description of the allowed

or disallowed variable assignments. As an example, an arithmetic constraint can be enforced efficiently

enforced by direct calculations than by declarative axioms or exhaustive listing of valid solutions.

Both of these procedure definitions are special cases of general procedures, which map constraint networks

and domain tuples into sets of additional constraints for the network. The reason we limit ourselves to

elimination constraints in this particular framework is the cost associate with added constraints, and the

unavoidable utility problem that follows.

Useful theoretical properties can be proved about certain classes of procedures and search engines, most

notably regarding correctness, systematicity and completeness. The obvious subclass of procedures consists

of those that are correct, meaning that no valid solutions are eliminated from consideration by applying the
procedure. More formally, an elimination procedure e is correct, if for any domain tuple (dl , dr), such

that (d_,... ,d_) = e((dl,... ,d_)), the values in d, \ d_ do not participate in any solution. Jdnsson [Jdn97]

proved that, for a large class of complete and systematic algorithms, the use of any set of correct procedures

will not affect completeness or systematicity. A larger, more interesting class is that of weakly correct
extension procedures, which only guarantee that at least one solution will remain after the application of the

procedure. For this class, J6nsson [J6n97] proved that search engines satisfying certain conditions will remain

complete and systematic, even when arbitrary sets of weakly correct extension procedures are utilized. All

well-known systematic algorithms, including non-chronological techniques like dynamic backtracking [Gin93],

satisfy these conditions.

In many cases, the concept of decision variables can be used to eliminate variables and constraints from

the problem, to reduce the problem size. The idea of only having to assign values to a subset of the variables
to determine a consistency has been around for quite some time. For example, in satisfiability algorithms

like Davis-Putnam [DP60], as soon as all clauses are satisfied, there is no need to instantiate remaining

variables. The general concept is that of dec_ion variables: given an elimination procedure e for a constraint
satisfaction problem C = (X, V, K), let D C_X be such that for any assignment to variables in D, applying e

to that assignment results either in a problem that is globally consistent or in an empty domain. It is easy to

see that it is sufficient to assign values to variables in D, as the procedure can be used to determine if the rest
of the problem is solvable. The definition extends easily to a set of procedures, giving us a clear definition

for decision variables for arbitrary sets of procedures. It should be noted that this definition significantly

generalizes the concept of control variables in satisfiability problems, which is a set of variables from which

the rest of the variables can be given values using unit propagation alone.

The formal concept of elimination procedures can be used to incorporate additional efficient rea.qoning

1The subset notation indicates that more variables have been a_igned values in e(p) than in p.

mechanisms into constraint reasoning techniques. These include continuous methods like solving linear

programming subproblems, and discrete methods like determining earliest and latest start times for the

variables in simple temporal networks. In essence, this formal framework provides a clear foundation for

many types of hybrid reasoning in constraint satisfaction.

5 Framework for Dynamic Procedural Reasoning

The goal of this work is to utilize procedural reasoning as an approach to defining a framework for dynamic

constraint reasoning. Let (Co, C1,...) be a dynamic constraint problem, such that each C, is a restriction.
or relaxation of the previous problem Ci-t. In terms of our autonomous planning application, the changes

from one problem instance to the next may be combinations of:

• Add or delete variables

• Add or delete constraints

• Modification of variable domains (including variable assignments being made or undone)

Each constraint network instance Ci is described in terms of a set of variables, each with a specific

domain (unit domains represent assignments), and a set of constraints. There are two types of constraints,
declarative and procedural. The declarative constraints are limited to a small set of constraints, handled

directly by the dynamic constraint reasoning framework. In the planning applications, those are:

• Equality and inequality constraints

• Distance constraints for temporal variables 2

All other constraints are described by elimination procedures. Since elimination procedures can be used

to define arbitrary constraints, this allows the network to be applied to different domains with no changes

except for adding the domain-dependent procedural constraints.
The framework allows for real-valued variables, as such variables are often necessary in domains such

as spacecraft control. Unfortunately, sound and complete reasoning with arbitrary procedural constraints

over continuous variables is not possible. We must therefore limit real variables to non-decision variables.

Doing so guarantees that once a valid solution is found to the set of decision variables, which are all discrete,

then the procedures can be used to determine the solution or inconsistency of the remaining variables. Note

that the real-valued variables can still participate in constraints, and have an effect on the solvability of the

problem. For an example, consider a real variable representing the remaining fuel after an engine burn. A
constraint links the duration of the burn and the thrust level to the fuel-level variable, and if the thrust level

is too high, or the duration too long, the constraint may indicate that the problem is unsolvable due to the

remaining fuel being below the minimum.
The main role of the dynamic constraint reasoning framework is to respond to queries about each CSP.

These queries include whether the CSP is consistent or not, which values in a domain may be eliminated from

consideration, and so on. The framework allows for approximate answers, e.g, by only indicating that the

instance has not been proven to be inconsistent, or by providing only a subset of the values that can provably
be eliminated from a domain. This trades of effectiveness (providing useful results) against efficiency (cost

of reasoning). The best known approaches to balancing this tradeoff are based on using limited consistency

reasoning, like achieving arc-consistency and providing the approximate answers based on the results.
To further enhance the efficiency of the framework, it is possible to retain information derived by the

reasoning process. For example, certain domain restrictions or assignments from correct elimination proce-
dures can be reused for the next instance. The simplest sufficient condition for doing this is that the next

instance is a restriction. A more sophisticated technique, based on storing the dependency information that

led to a domain restriction, allows the reuse of some conclusions, even in the face of a relaxation.

Consider, for example, the constraint on spacecraft fuel consumption which we mentioned earlier. For

any thrusting segment, the thrust level and segment duration affect the fuel consumption. Due to engine

warm-up time and other complications, this relation is rarely linear. An elimination procedure enforcing this
constraint can reduce the domains for the thrust level, duration and fuel consumption variables, based on

current information. For example, if available fuel limits the fuel consumption, the procedure can limit the

_The temporal constraints form & simple temporal network which can be handled using el_icientreasoning techniques, a_l
described in [DMP9t] and [TMM98].

thrust level and duration. It is easy to see that once the duration and thrust level have been determined, the

fuel consumption can be calculated directly by this procedure. This makes the real-valued fuel consumption
variable a non-decision variable.

6 Conclusions and Future Work

Our work is aimed at specifying a general, effective framework for performing constraint reasoning in model-

based autonomous control applications. These applications demand that arbitrary constraints can be spec-

ified, that real-valued variables must be handled, and that the reasoning be efficient and effective. An
example of such an application is the new RA Planner, which is being developed for future autonomous

control applications on-board spacecraft and rovers.

To provide all the necessary functionality, we have defined a framework that uses elimination procedures

to describe arbitrary constraints and to enhance the efficiency of the framework. The result is a well-defined

framework that can be proven to be sound at all times, and complete with respect to fully determining

consistency and the set of valid solutions. To retain efficiency, the framework also allows for incomplete but
correct results, which can be found in much less time.

The framework has been implemented as a prototype that has been integrated into the new RA planner.

The resulting constraint reasoning abilities cover all of the abilities needed for the original RA planner, which

successfully flew on Deep Space One. As a result, we expect this framework to be useful in various dynamic

constraint reasoning applications, including the next generation autonomous spacecraft control agents.
What is the cost of using constraint procedures over specialized procedures? For example, compare AC-x

to using constraint procedures for arc consistency and see how much the overhead is.

Finding minimal sets of decision variables. Trading off complexity of decision procedures with number
of decision variables.

References

[Dec88]

[DMP91]

[DP60]

[Gin93]

[JMMR99]

[J6n97]

[MNPW98]

[Mus94]

[TMM98]

A Dechter, R. & Dechter. Belief maintenance in dynamic constraint networks. Proceedings of

the Seventh National Conference on Artificial Intelligence, pages 37--42, 1988.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial Intelligence,
49:61-95, 1991.

M. Davis and H. Putman. A computing procedure for quantification theory. Journal of the
ACM, 7:201-215, 1960.

Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25-
46, 1993.

Ari K. Jdnsson, Paul H. Morris, Nicola Muscettola, and Karma Rajan. Next generation remote

agent planner. In Proceedings of the Fifth International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS99), 1999.

Ari K. J6nsson. Procedural Reasoning in Constraint Satisfaction. PhD thesis, Stanford Univer-
sity, Stanford, CA, 1997.

Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian William. Remote agent: To

boldly go where no ai system has gone before, ai, 103(1-2):5-48, August 1998.

N. Muscettola. Hsts: Integrated planning and scheduling. In M. Zweben and M. Fox, editors,

Intelligent Scheduling, pages 169-212. Morgan Kaufman, 1994.

Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast transformation of temporal

plans for efficient execution. In Proceedings of the 15th National Conference on Artificial Intelli-

gence (AAAI-gS) and of the 10th Conference on Innovative Applications of Artificial Intelligence
(IAAI-98), pages 254-261, Menlo Park, July 26-30 1998. AAAI Press.

